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ABSTRACT: Recent studies have questioned the separability of the tight and roaming
mechanisms to molecular decomposition. We explore this issue for a variety of reactions
including MgH2 → Mg + H2, NCN → CNN, H2CO → H2 + CO, CH3CHO → CH4 + CO,
and HNNOH→ N2 + H2O. Our analysis focuses on the role of second-order saddle points in
defining global dividing surfaces that encompass both tight and roaming first-order saddle
points. The second-order saddle points define an energetic criterion for separability of the two
mechanisms. Furthermore, plots of the differential contribution to the reactive flux along
paths connecting the first- and second-order saddle points provide a dynamic criterion for
separability. The minimum in the differential reactive flux in the neighborhood of the second-
order saddle point plays the role of a mechanism divider, with the presence of a strong
minimum indicating that the roaming and tight mechanisms are dynamically distinct. We
show that the mechanism divider is often, but not always, associated with a second-order saddle point. For the formaldehyde and
acetaldehyde reactions, we find that the minimum energy geometry on a conical intersection is associated with the mechanism
divider for the tight and roaming processes. For HNNOH, we again find that the roaming and tight processes are dynamically
separable but we find no intrinsic feature of the potential energy surface associated with the mechanism divider. Overall, our
calculations suggest that roaming and tight mechanisms are generally separable over broad ranges of energy covering most
kinetically relevant regimes.

I. INTRODUCTION
In roaming radical reactions1−3 one bond in a molecule
becomes greatly extended, typically to more than twice the
equilibrium bond length and then, before the nascent radicals
completely separate, they reorient and react, often by
disproportionation. The two most thoroughly studied roaming
radical reactions are the dissociations of formaldehyde4−6 and
acetaldehyde,7−10

→ ··· → +H CO [H HCO] H CO2 2 (1)

→ ··· → +CH CHO [CH HCO] CH CO3 3 4 (2)

Roaming saddle points for both of these reactions have been
reported11 in which one bond (CH in the case of H2CO and
CC in the case of CH3CHO) is greatly elongated. These
reactions also have tight saddle points with compact three-
center structures connecting the same sets of reactants and
products. The reaction paths associated with the roaming and
tight saddle points result in two distinct mechanisms for the
same net reaction, and experimental evidence for the presence
of two mechanisms played a crucial role in identifying the
existence of the roaming radical mechanism.1,4,7

Roaming radical pathways may also provide alternative
reaction paths for isomerization.12 This can happen when the
reorientation of the incipient radicals leads to an addition
reaction rather than an abstraction reaction. This roaming
radical induced isomerization is especially likely when the
nascent radicals include at least one resonantly stabilized radical

with significant radical character at multiple sites. After a long-
range reorientation of the two radicals, readdition can occur at a
different site. For ion−molecule reactions, roaming pathways
are even more significant due to the increased strength of the
long-range interactions and, for this reason, have long been
known to be important.13,14 Roaming pathways also exist for
radical decompositions15,16 in which a nascent radical and
molecule are formed, reorient, and react. However, the roaming
contributions here are often reduced, due to the presence of
significant barriers for the final radical−molecule reactions.
Dynamical and statistical theoretical models for treating the

kinetics of roaming radical reactions were recently presented in
refs 17 and 12, respectively. A key assumption in both of these
models is that the contributions from the roaming and tight
reaction pathways are separable. As discussed below, the proper
transition state dividing surface is always a global surface that
includes contributions from every competing pathway connect-
ing a given set of reactants to products. In practice, it is often
convenient to approximate this global dividing surface as
consisting of separate contributions from the different
processes. Within this approximation one may then use
different dynamical methods to characterize each process. In
our statistical and dynamical treatments of roaming, for
example, the roaming radical pathways were modeled by
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considering the long-range reorientational dynamics of the two
incipient radicals approximated as rigid bodies. Meanwhile, the
dynamics of the tight transition states were calculated
independently using variational transition state theory (TST)
and the rigid rotor−harmonic oscillator (RRHO) approxima-
tion.
The goal of this paper is to address the question of the

validity of the presumed separation of the roaming and tight
pathways for roaming radical reactions. We emphasize the
importance of considering dynamic separability and not simply
energetic separability. We do so through illustrative studies of
global transition state dividing surfaces for some representative
cases of roaming radical reactions. The results and framework
we present are also relevant to the more general question of
separability for any reaction having multiple pathways.18

This paper is organized into five sections. In the first section
we briefly review key elements of TST, define what we mean by
global dividing surfaces, including how one might define
optimal global dividing surfaces, and finally discuss how one can
use these surfaces to address this question of separability. The
case of a transition state dividing surface with multiple torsional
minima is used to illustrate the importance of the second-order
saddle point to the determination of optimal global dividing
surfaces. The energy of the second-order saddle point plays a
key role in the separability issue.
Next we consider two simple examples of triatomic reactions

with competing pathways. The first is the dissociation of MgH2
to Mg + H2 and the second is the isomerization of NCN to
CNN. In both cases there are two competing pathways
connecting the same sets of reactants and products, one having
a tight saddle point and one with a long-range roaming saddle
point. The dimensionality of these two systems is sufficiently
small that one can readily define global dividing surfaces that
include both saddle points and address the question of
separability on these global dividing surfaces. A key conclusion
here is that in each case there exists a second-order saddle point
on the global dividing surface. The energy of the second-order
saddle point provides a valid indication of the energetic
separability of fluxes associated with the two, first-order saddle
points. Meanwhile, the differential contribution to the reactive
flux at the second-order saddle point provides a valuable
indication of the dynamic separability of the two pathways. This
differential reactive flux may be evaluated via either trajectory
simulations or statistical theories. Here, we choose to use
statistical theories.
We then consider the more complicated formaldehyde and

acetaldehyde decompositions, which have been the focus of
many earlier theoretical studies. For these reactions, we again
look for second-order saddle points but instead find conical
intersections separating the two reaction paths. We map out the
connections between the conical intersections and the two first-
order saddle points, and we find that the conical intersections
play an analogous role in determining the separability of the
two pathways as the second-order saddle points played for the
triatomic examples.
Finally, we conclude with a discussion of the decomposition

of HNNOH, which is a key intermediate in the NH2 + NO
reaction of importance in thermal de-NOx. In this case, the
long-range attractions are so strong that there do not appear to
be separate roaming and tight saddle points, although we find
evidence that a roaming-type process does play a role as a
sizable anharmonicity in one of the bound modes of the tight
saddle point. Interestingly, the differential contributions to the

reactive flux indicate that even for this case the roaming and
tight mechanisms are dynamically separable.

II. TRANSITION STATE THEORY, SADDLE POINTS,
AND GLOBAL DIVIDING SURFACES

II.A. Transition State Theory Background. There have
been many excellent presentations of the fundamental concepts
of TST.19−22 Here we review those aspects of TST relevant to
the question of separability.
The concept of a reaction is meaningful only when the

reactants and products can be identified as distinct from one
another in some way. For chemical reactions, reactants and
products differ in their bonding arrangements, and these
different bonding arrangements are associated with distinct,
localized regions of configuration space. For such reactions, it
necessarily follows that one can identify an n−1-dimensional
(hyper)surface through configuration space that completely
separates reactants from products, where n is the number of
internal degrees of freedom of the system. By construction, any
dynamical path in configuration space that connects reactant
configurations to product configurations must pass through
such a dividing surface at least once. There are an infinite
number of such dividing surfaces, differing from one another in
their geometrical parameters. The only restriction on the
members of this family of dividing surfaces is that each dividing
surface must completely separate reactants from products.
The classical flux through a dividing surface for a micro-

canonical distribution of states at fixed total energy, E, is
proportional to the classical state count, NE, commonly
expressed as20

∫ ∫= Θ −−N
h

E HQ P
1

d d ( )E
s

n q

s( )
1

( )
s( ) (3)

where the n coordinates Q are restricted to the n−1-
dimensional dividing surface q(s), P(s) are the conjugate
momenta for motion on q(s), s is an index that labels the
dividing surface, H is the total energy, and Θ is the Heaviside
step function. The classical state count for any dividing surface s
will, in general, be greater than the net reactive flux NE

‡ due to
some reactive trajectories being overcounted as they cross the
dividing surface more than once on their way from reactants to
products and due to some nonreactive trajectories being
counted as they pass through the dividing surface, but later
head back to reactants. This observation is the source of the
variational principle, which states that because NE

(s) ≥ NE
‡ for

any s, minimizing the flux with respect to the geometric
parameters of the dividing surface necessarily improves the rate.
Furthermore, one can show that the exact classical rate is
proportional to the fully variationally optimized flux NE

‡, but
only when the momenta are included in the definition of the
dividing surface. Several elegant proofs of this fundamental law
of classical mechanics have been given over the decades by
Wigner,23 Keck,24 Pechukas and Pollak,25 Miller,26 and others.
The fully variationally optimized diving surface is called the
transition state dividing surface or simply the transition state.
The variational principle is the cornerstone of all practical

implementations of TST, where, in place of a complete
optimization of the dividing surfaces to obtain the exact rate,
one considers limited minimizations of the reactive flux within a
restricted set of dividing surfaces to obtain an upper bound to
the rate. The geometric prescription for the dividing surfaces
and the choice of how to count states on the dividing surfaces
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determines the accuracy of these TST predictions. Although
TST is formally a classical theory, useful modern applications
generally employ ad hoc quantum mechanical corrections
involving the replacement of the classical state counts with
quantum state counts and corrections for dynamical tunneling
through and reflection from the barrier.
One can also formulate a canonical (thermal) TST rate

expression and a canonical version of the variational principle,
where the information at the transition state takes the form of a
temperature dependent pseudopartition function QT

(s) evaluated
for the n − 1 degrees of freedom of the dividing surface20

∫ ∫ β= −−Q
h

HQ P
1

d d exp( )T
s

n q

s( )
1

( )
s( ) (4)

The pseudopartition function QT
(s) is again minimized with

respect to geometric parameters of the dividing surface to
improve the predicted rate coefficient. Alternatively, more
accurate TST estimates are obtained by accounting for the
conservation of total angular momentum, J, and focusing on E
and J resolved state counts during the variational optimizations.
We emphasize that, whenever a description in terms of rate

constants is appropriate, it is always possibleat least
formallyto define a valid transition state dividing surface
that completely separates reactants from products, independent
of the number or variety of competing reaction paths. This
claim relies solely upon the necessary n−1-dimensional
geometric separation of the localized reactant and product
configurations associated with chemical reactions. Generally,
this reactant−product separation fails only at high energies (or
temperatures) where the transformation between them
becomes so rapid that the distinction between the reactants
and products is blurred.27 We note that, for some systems,
particularly those with intermediate wells, the system may pass
through more than one transition state dividing surface in series
on its way from reactants to products.28,29 Furthermore, some
processes may be poorly described by the stochastic/
equilibrium assumptions inherent in TST.30,31 We do not
consider these complications further.
II.B. First-Order Saddle Points. The first-order saddle

point, which is a single geometry characterized as having zero
potential gradient and one negative Hessian eigenvalue, plays a
key role in TST. Unfortunately, this saddle point is often
conflated with the transition state, which, as discussed above, is
an n−1-dimensional hypersurface. As one approaches the limit
of zero temperature, the variationally optimized transition state
dividing surface moves toward and ultimately contains the first-
order saddle point,32 and saddle points are therefore often
useful in defining transition state dividing surfaces. Never-
theless, the saddle point and transition state are fundamentally
different geometric objects.
To define a dividing surface from a saddle point, one needs

to make additional choices. One particularly useful choice is to
define the dividing surface as passing through the first-order
saddle point, perpendicular to the normal mode vector
associated with the imaginary frequency. This prescription is
designed to yield the minimal state count for a quadratic
expansion of the potential about the saddle point. As such, it
generally yields accurate rate predictions at near-threshold
energies. However, with increasing energy, additional terms in
the potential become important. The optimal dividing surfaces
then tend to be increasingly displaced from the saddle point
and also may not be oriented perpendicularly to the direction
of the imaginary frequency’s normal mode vector. Furthermore,

for quantum state counts, vibrational zero-point energies can
lead to displacements even in the zero-temperature limit.
One useful scheme for generating a series of candidate

dividing surfaces for the variational TST minimization is to
follow the intrinsic reaction coordinate (IRC) downhill from
the saddle point. Coordinates along this path may be labeled by
the reaction coordinate s, which describes the mass-scaled
distance along the IRC from the saddle point toward either the
reactants (negative s) or the products (positive s). Along the
IRC, but displaced from the saddle point, one can define useful
dividing surfaces as perpendicular to the nuclear gradient.
Alternatively one can follow a minimum energy path (MEP)
from the saddle point to reactants and products. In following an
MEP, one first chooses a particular internal coordinate, which
ideally will have high overlap with the reaction coordinate.
Then, for a range of different fixed values of this distinguished
coordinate, one optimizes to a minimum in the remaining n − 1
degrees of freedom. A family of dividing surfaces can then be
defined along the MEP in the same way as is done for an IRC.
The utility of a given MEP depends greatly on the choice of the
distinguished coordinate and how smoothly it connects
reactants, saddle point, and products. For poor choices of a
distinguished coordinate the MEP is not guaranteed to pass
through the saddle point.

II.C. Counting States. The evaluation of eqs 3 and 4 can in
principle be performed exactly, although in practice one often
uses the harmonic oscillator and rigid rotor approximations.
Within the RRHO approximations, one then variationally
optimizes NE

(s) and QT
(s) with respect to s and other choices of

the dividing surface, as discussed above. Here, we highlight
three characteristics of the potential energy surface along the
global dividing surface that influence the state count NE

(s) and
pseudopartition function QT

(s): (1) the potential energy along
the dividing surface, (2) the frequencies perpendicular to the
reaction coordinate, and (3) the total volume of the dividing
surface. These considerations controlling the state count are of
course not independent of one another, and the best variational
dividing surface is the best compromise of maximizing the
potential energy along the dividing surface, maximizing the
frequencies perpendicular to the reaction coordinate, and
minimizing the volume of the dividing surface. By definition,
this compromise minimizes dynamical recrossing. We also
highlight one key dynamical criterion: namely that, near
threshold, the dividing surface that is perpendicular to the
reaction coordinate and passes through the saddle point
minimizes dynamical recrossing.

II.D. Global Dividing Surfaces, the Second-Order
Saddle Point, and Mechanism Separability. In general,
there may be multiple first-order saddle points connecting a
given chemical species to a given product, or more generally to
a variety of products. The proper implementation of TST then
requires a global dividing surface completely separating the
reactants from each of these products via each of the pathways
and allowing for passage through the neighborhood of each
saddle point. Qualitatively, one expects that this global dividing
surface should consist of a union of segments that are locally
optimal for the regions about each of the saddle points. Often,
one presumes that the local segments are independent and that
the total reactive flux can simply be written as the sum of the
fluxes for TS dividing surfaces optimized separately for each
segment of the dividing surface. In this work, we wish to
proceed beyond this typical assumption and explicitly explore
some global dividing surfaces for several roaming radical
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reactions. As a prelude to this, we consider the simpler case of a
dissociation reaction with a torsion, where it is relatively easy to
comprehend the nature of the optimal global dividing surface.
For many dissociation reactions, there are two or more

saddle points that differ principally only in their torsional
configurations. Furthermore, there are generally second-order
saddle points, with zero gradients and two negative eigenvalues
for the Hessian, separating these first-order saddle points. Such
reactions provide a particularly simple case for considering the
global dividing surface. Consider, for example, the two-
dimensional representation in Figure 1 of the potential energy

surface for the decomposition of HOCO into H + CO2. For
this reaction there are two first-order saddle points correspond-
ing to cis (SPcis) and trans (SPtrans) orientations of the HOCO
dihedral angle. At both of these saddle points, R (the O−H
distance) closely describes the reaction coordinate. There is
also a second-order saddle point (SP2) that lies between the
two first-order saddle points.
There are various procedures one could employ in generating

a global dividing surface for the HOCO decomposition. A
particularly simple approach (Model 0) involves the extrap-
olation of the optimal near-threshold local dividing surface at
the cis saddle point to cover the full torsional range. (The
numbered models discussed throughout this section are
presented in more detail in the Appendix.) As discussed
above, the optimal dividing surface at near threshold energies is
perpendicular to the reaction coordinate and passes through
the saddle point, as shown by the blue line in Figure 1. Note
that this dividing surface is valid as it completely separates the
reactants from the products. However, it passes near the trans
saddle point at a lower potential energy than the energy of the
trans saddle point, and one may therefore expect significant
recrossing in this region and an overestimate of the predicted

rate coefficient for this choice of global dividing surface.
Alternatively, the corresponding local trans dividing surface
could also be used (i.e., a dividing surface perpendicular to R
and passing through SPtrans). This choice would be more
suitable near SPtrans but is not suitable near SPcis. Either of these
choices for the global dividing surface would lead to an
overprediction of the reaction rate.
Another approach (Model 2) would involve the surface

connecting the two first-order saddle points (e.g., linearly), as
illustrated by the green line. This choice may appear to be a
clear improvement over Model 0 as it increases the potential
energy along the global dividing surface. However, this surface
is not locally perpendicular to the reaction coordinate at either
of the saddle points. This defect of linear interpolations is
general and may lead to recrossing near both of the saddle
points, particularly at low energies. Instead of linearly
interpolating, one could interpolate between the two blue
dividing surfaces in some other way such that the resulting
global surface was locally perpendicular to the reaction
coordinates for each of the saddle points. The resulting global
dividing surface would feature reduced dynamical recrossing
near each of the saddle points but would necessarily feature a
larger volume.
Notably, these first two models make no use of any

information about the second-order saddle point and are
generated from the data for the first-order saddle points alone.
Global dividing surfaces that pass through the second-order
saddle point might be expected to yield more optimal dividing
surfaces due to reduced recrossing in the vicinity of the second-
order saddle point. The simplest such global dividing surface
(Model 3) linearly connects the second-order saddle point to
the two first-order saddle points and is denoted with the pair of
orange lines in Figure 1. Again, one could attempt to improve
this model by forcing the global dividing surface to be
perpendicular to the reaction coordinate near the saddle points.
Note that a dividing surface defined by Model 3 will in general
have a larger volume than that defined by Model 2. This
increase in volume is likely more than offset by the increase in
the potential energy along the global dividing surface.
A final model is obtained by performing a constrained saddle

point search in R for each torsional angle. Notably, the red line
connecting these distinguished coordinate saddle points passes
through the first- and second-order saddle points and is
essentially parallel to the locally optimal cis and trans dividing
surfaces in the neighborhood of the first-order saddle points.
We label this path, connecting the two first-order saddle points
and the second-order saddle point, the saddle point path (SPP)
in analogy with MEPs, which connect two minima through a
first-order saddle point.
The potential energy values along the torsional coordinate

are illustrated in Figure 2 for each of these model global
dividing surfaces. As discussed above, one criterion for the
optimal dividing surface is that it is likely to be the one with the
most positive potential energies along the dividing surface.
According to this criterion, the two Model 0 surfaces are clearly
inadequate. The one based on the cis local surface has much
lower potential values in the neighborhood of SPtrans than do
the other models. Similarly, the one based on the trans local
surface falls below that for the cis local surface in the
neighborhood of SPcis. Furthermore, they both fail to capture
the high potential values near SP2. The Model 2 surface
similarly misses the high potential values near SP2. In contrast,

Figure 1. Contour plot for the interaction of an H atom with a rigid
CO2 molecule, with the CO2 molecule held fixed at its geometry for
the cis first-order saddle point. R is the OH distance. The contour
spacings are 1 kcal/mol. The blue, green, orange, and red lines denote
the Model 0, 2, 3 and SPP transition state dividing surfaces. Note that
the complete global dividing surfaces include symmetrical extensions
of these lines to 360°.
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the SPP and Model 3 surfaces are both higher than the Model 0
and 2 surfaces throughout and particularly near SP2.
It might seem like the SPP model should always lead to a

higher energy dividing surface than the other models. This
expectation is correct in our simple, two-dimensional, H + CO2
example because, once we have fixed the distinguished
coordinate, there is only one coordinate left and we are
maximizing the energy with respect to that coordinate. It will
not be true in general for higher dimensional problems where
each point on the SPP comes from a multidimensional saddle
point optimization rather than a simple energy maximization.
We have in fact found examples where linear interpolations
between two first-order saddle points lead to barriers that are
higher than the true second-order saddle point. However, these
linear interpolations do not provide better dividing surfaces as
the potential energy surface orthogonal to the interpolation
coordinate now has minima that are lower than the
corresponding point on the linear approximation to the SPP.
In summary, linear interpolations between two saddle points
will provide neither lower bounds nor upper bounds on the
energetic separability of the two saddle points and do not
provide improved global dividing surfaces even when their
maximum lies higher than the second-order saddle point.
We emphasize that the utility of a given SPP will depend

critically on the choice of the distinguished coordinate. For
cases where a suitable distinguished coordinate can be found
that leads to a SPP that smoothly connects the first- and
second-order saddle points, we expect that the SPP will serve as
a useful starting point for a fully, variationally optimized, global
dividing surface. We note that Maronsson et al.33 have recently
reported a rigorous algorithm for following ridges between two
first-order saddle points. These ridges can be considered as an
analogue of the IRC, just as the distinguished coordinate SPP is
the analogue of the MEP. This kind of approach may be
necessary in cases where a suitable choice for a distinguished
coordinate cannot be found.
The separability of two mechanisms is best defined in terms

of the dynamic separability of the pathways, with the key
question being whether or not there is some separation in
phase space between trajectories that follow one mechanism as
opposed to the other? The energy of the second-order saddle
point, ESP2, defines an energetic separability for the two
pathways. Below this energy the two pathways must be

dynamically distinct. Importantly, although energetic separa-
bility guarantees dynamic separability, the converse does not
necessarily hold; i.e., the processes may be separable
dynamically even if energetically they are not.
Notably, TST provides a means for directly examining the

dynamic separability of the pathways. For a global dividing
surface that spans both regions, one may consider the
differential contribution to the flux through the global dividing
surface as a function of the coordinate along some path, such as
the SPP, that connects the first-order saddle points. This
differential flux generally has a minimum in the neighborhood
of the second-order saddle point. When the differential flux at
this minimum is much less than that at the first-order saddle
points, the two pathways are dynamically distinct. For
concreteness, we label the n−2-dimensional surface on which
the differential flux has its minimum as the mechanism divider
surface. The examples given below are used to further discuss
and illustrate these separability issues.
In summary, the second-order saddle point is a key

geometrical object for the determination of optimal global
dividing surfaces. Its role in the exploration of global dividing
surfaces is analogous to the role of the first-order saddle point
in the determination of the local TS dividing surfaces. Global
transition state dividing surfaces that include it are expected to
provide a good first approximation to the optimal dividing
surface. The Model 3 and SPP surfaces, which we and others34

have been using to obtain torsionally global transition state
dividing surfaces for a number of reactions, provide a good
starting point for considering the appropriateness of the
separation into independent sums of locally evaluated reactive
fluxes. Importantly, the second-order saddle point provides a
good first approximation to the location of the mechanism
divider surface. Finally, we note that the usefulness of the
second-order saddle point in determining separability relies
upon it being an energy maximum in two coordinates and an
energy minimum in the remaining coordinates. Another
geometrical object that satisfies these criteria is the minimum
energy point on a conical intersection. We will see below that
for some systems the minimum energy point on a conical
intersection does in fact play the role that the second-order
saddle point played for HOCO.
We now illustrate the first- and second-order saddle points

and the corresponding model global dividing surfaces for
several examples of roaming radical reactions. We also delve
into the question of transition state separability for each of
these examples via considerations of the differential reactive flux
for the mechanism divider surface.

III. TRIATOMIC EXAMPLES
III.A. MgH2. Recent quantum dynamics calculations by

Takayanagi et al.35 using an analytic surface by Li et al.36 have
shown that MgH2 dissociates to Mg + H2 via two distinct
mechanisms, the first over a conventional, tight saddle point
and the second via a roaming type mechanism. Indeed, their
calculations suggest that the roaming mechanism is the
dominant mechanism for formation of the Mg + H2 products.
A contour plot of the potential surface for this reaction is
shown in Figure 3. Four stationary points are visible in this plot,
the global minimum (collinear HMgH), the tight saddle point
for dissociation to Mg + H2, the roaming saddle point leading
to the same products, and a second-order saddle point between
the two first-order saddle points. (Note that for each of the
saddle points there are symmetrically related stationary points

Figure 2. Plot of the potential energy along the model dividing
surfaces. The line colors match those in Figure 1. Blue denotes Model
0, green Model 2, orange Model 3, and red the SPP.
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above and below the MgH axis.) The properties of the four
stationary points are given in Table 1. The potential surface is
qualitatively similar to that of formaldehyde in that the overall
dissociation to Mg + H2 is close to thermoneutral and the tight
and roaming saddle points are also close to each other in
energy. Also visible in Figure 3 is a very prominent, barrierless
disproportionation pathway for the reaction MgH + H→Mg +
H2, again qualitatively similar to the H + HCO disproportio-
nation path.
Although the geometries of the three saddle points are quite

different, the HMgH angle, θ, varies by only 2° between the
three saddle points, from 55.9° to 57.5°. Furthermore, the
character of the normal mode vectors associated with the
imaginary frequencies for the two first-order saddle points is
predominantly an HMgH bend. A useful global dividing surface
is therefore given by the constraint θ = ∼56.5°. A better but
more complicated dividing surface would be one in which for
each value of RMgHa and RMgHb on the dividing surface θ is
optimized to find the maximum energy. A plot of the potential
on this dividing surface is shown in Figure 4. Although this plot
is qualitatively reminiscent of a potential energy surface for A +
BA → ABA → AB + A, the significance of this surface is quite
different as we must consider the reactive flux moving through
this surface rather than on it. In this plot then, the “minimum”

in the lower left is the tight saddle point and the entrance and
exit channel “minima” correspond to the two equivalent
roaming saddle points. The two equivalent “saddle points” in
this plot, at (1.8,2.5) and (2.5,1.8), correspond to the second-
order saddle points. From this plot then it is clear that the
second-order saddle points provide a measure of the
separability of the fluxes associated with the tight and roaming
saddle points. If one is only interested in energies below that of
the second-order saddle point, the tight and roaming fluxes may
be treated independently for this choice of global dividing
surface. At higher energies an accurate transition state theory
treatment may require the use of a global dividing surface such
as that shown in Figure 4.
For more complicated, higher-dimensional systems and for

systems where the reaction coordinates for the competing
processes differ significantly, it may be difficult to represent
good global dividing surfaces as clearly as in Figure 4. However,
the analysis for HMgH suggests that one can study separability
by examining one-dimensional pathways connecting the first-
order saddle points using the models discussed in section II.
From Figure 3 it is clear that one can define many pathways

connecting the two first-order saddle points that exhibit no
barrier separating these saddle points. We emphasize that these
low energy pathways are irrelevant to the question of
separability (either energetic or dynamic) as they are not on
or near the optimal global dividing surface. Instead, and as

Figure 3. Contour plot for the interaction of an H atom with a rigid
MgH radical. The blue contours denote attractive interactions, and the
red denote repulsive interactions (relative to the MgH + H asymptotic
energy). The contour spacings are 0.02 kcal/mol for the thinnest lines
and 0.5 kcal/mol for the lines of medium thickness and 5.0 kcal/mol
for the thickest contour lines. The MgH bond length for the rigid
MgH fragment is 1.71 Å.

Table 1. (4E,6O)-CAS+1+2+QC/cc-pVQZ Geometries, Frequencies, and Energies of the Stationary Points on the MgH2
Potential Surface

MgH2 MgH + H Mg + H2 tight SP roaming SP 2nd-order SP

RMgH (Å) 1.711 1.742 1.820 1.742, 4.69 1.743, 2.471
RHH (Å) 0.74
∠H−Mg−H (deg) 180 57.5 56.4 55.9
ω1 (cm

−1) 1628 1490 4398 1030 1491 1506
ω2 (cm

−1) 1601 532 36 1131i
ω3 (cm

−1) 441(×2) 3566i 73i 376i
energy (kcal/mol) −72.65 0.00 −76.37 −0.60 −0.04 1.86

Figure 4. Contour plot of an optimized dividing surface for the
reaction MgH2 → Mg + H2. At each point on this plot the angle θ is
chosen to locally maximize the energy. The contour interval for the
thick (thin) contours is 1.0 (0.1) kcal/mol. Other plotting conventions
are as in Figure 3.
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discussed in section II, one may address the question of
separability by characterizing the potential energy surface near
the ridge connecting the two first-order saddle points, i.e., near
the SPP. For HMgH, the geometries of the two first-order
saddle points differ significantly in only one internal coordinate
(one of the MgH distances). This coordinate then is an ideal
choice for a distinguished coordinate in an SPP calculation.
Here, one MgH distance is kept fixed at each of a range of
different values and for each choice of the fixed MgH distance
the remaining two coordinates are optimized to a saddle point.
A plot of the energy along this SPP is shown in Figure 5. The

three dots on this plot correspond to geometries and energies
of the full-dimensional stationary points. The fact that these lie
so close to our approximate ridge suggests that this one-
dimensional path is a good representation of the global ridge
separating reactants and products.
Having an approximate global transition state dividing

surface (Figure 4) allows us to also investigate the question
of dynamic separability in detail. In particular, we use the
coordinate v = rMgH2 − rMgH1 to denote the position along the
SPP. We then evaluate the differential contribution to the
number of available states at the transition state, N′ = dN/dv, as
a function of v. This contribution is readily evaluated via
integration over u = rMgH1 + rMgH2 under the reasonable
assumption that the SPP corresponds to fixed θ.37 For
simplicity, we restrict our considerations to a planar model
but include fully anharmonic state counts within this model.
Generalizations to a full three-dimensional model would
increase the relative importance of the roaming contribution
due its lower rotational constants but is not expected to affect
the qualitative conclusions.
This v dependent contribution to the transition state number

of states is illustrated in Figure 6 for a range of energies. The
minimum in each of the lines (i.e., the value for the mechanism
divider surface) correlates with the location of the second-order
saddle point. For excess energies of 2 kcal/mol and lower
(relative to the MgH + H asymptote) the tight and roaming
transition states are completely separated with a 0 contribution
in the neighborhood of the second-order saddle point. At 4
kcal/mol, which is 2.3 kcal/mol higher than the second-order
saddle point, there is still a significant dynamic separation, as

the contribution at the second-order saddle point is still only
20% of that at v = 0, and is an even smaller fraction of that at
large v. By 10 kcal/mol the minimum has almost disappeared
and the distinction between the tight and roaming mechanisms
is blurred.

III.B. CN2. Triplet CN2 has three stable isomers, linear NCN
and CNN, and a higher energy, shallow, C2v ring species.
Moskaleva et al.38 have shown that the two linear isomers can
isomerize via a pathway involving the ring species and two tight,
ring-opening/closing, saddle points. They also note that there is
no barrier for the addition of N and CN to form either of the
linear isomers. This suggests that there should be a roaming
type isomerization pathway in which the molecule nearly
fragments to N + CN, the nitrogen atom orbits around the CN
fragment and finally reattaches to the other end of the CN
fragment. In this particular case the roaming pathway is not
expected to be important because the N + CN asymptote lies
∼35 kcal/mol above the barrier for the tight isomerization.
However, this is still a useful example to study the connectivity
and separability of the tight and roaming pathways. For our
purposes we will ignore the existence of the shallow ring
minimum and the lower ring-opening saddle point (to NCN)
and examine the connectivity between the roaming saddle point
and the higher ring-opening saddle point (to CNN).
The geometries, frequencies, and energies of the relevant

stationary points are summarized in Table 2, and a plot of the
potential surface is given in Figure 7. Figure 7 is qualitatively
quite similar to Figure 3, showing two first-order saddle points
separated by a second-order saddle point. In this case, however,
the second-order saddle point is much higher and broader than
in MgH2. The CNN angle varies by over 20° (compared to less
than 2° for MgH2) for the three saddle points, implying a more
highly curved ridge separating reactants and products. None-
theless, we can still attempt to follow the ridge using the SPP
algorithm outlined above for MgH2. If we take as our
distinguished coordinate the distance from the midpoint of
the CN bond to the second nitrogen atom, we obtain the SPP
shown in Figure 8. Again we find this SPP passes very close to
all three saddle points implying we have a reasonable
representation of the ridge.

Figure 5. SPP for the dissociation of MgH2 as a function of the one of
the MgH distances. The solid red dots correspond to the first- and
second-order saddle points.

Figure 6. Plot of the differential contribution to the transition state
number of states N′(v) as a function of the SPP coordinate v
normalized by the differential contribution at the minimum in the
potential for the global dividing surface (v = 0). The different lines
denote the N′ values for different energies in kcal/mol relative to MgH
+ H.
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The plot in Figure 8 indicates an energetic separability of the
tight and roaming mechanisms for energies up to 5 kcal/mol
relative to CN + N. The dynamic separability was also explored
via a determination of the differential contribution N′ as a
function of the separation RNM. For this case, we evaluated the
CN stretching frequency and overall rotational constants along

the SPP and then used rigid rotor harmonic oscillator
assumptions to evaluate the number of states.
The calculated N′ values are illustrated in Figure 9 for a range

of excess energies relative to CN + N. The mechanism divider

surfaces (i.e., the minima in the differential contributions) again
correlate with the second-order saddle point. Notably, in this
case the dynamic separability persists to high energy and the
presumption of distinct tight and roaming isomerization
mechanisms is widely appropriate. Even at an excess energy
of 20 kcal/mol the contribution at the second-order saddle
point is only 30% of that at the minimum in the potential for
the global transition state dividing surface. Note that
anharmonic vibrational effects will have little bearing on these
plots because the only vibrational mode for the N′ evaluations is
of high frequency (∼1900 cm−1) throughout.

IV. FORMALDEHYDE AND ACETALDEHYDE
Far more has been written about roaming radical mechanisms
in formaldehyde and acetaldehyde than for any other cases.
Nonetheless, questions as to the separability of the roaming and
tight pathways for both these systems continue to be raised.39,40

Unfortunately, the high dimensionality of these systems has, to
date, made it impossible to follow the ridges connecting the
tight and roaming saddle points.

IV.A. Formaldehyde. The first reported attempt to
characterize an approximate ridge for formaldehyde was by

Table 2. (10E,9O)-CASPT2/cc-pVTZ Geometries, Frequencies, and Energies of the Stationary Points on the CN2 Potential
Surface

NCN N + CN CNN tight SP roaming SP 2nd-order SP

RCN (Å) 1.237 1.180 1.239 1.237 1.180 1.189
RNN (Å) 1.212 1.470 3.449 2.290
∠C−N−N (deg) 180.0 180.0 72.9 95.6 87.8
ω1 (cm

−1) 1651 2045 1473 1753 2037 1897
ω2 (cm

−1) 1230 1230 727 40 558i
ω3 (cm

−1) 881(×2) 434(×2) 557i 23i 296i
energy (kcal/mol) −105.9 0.0 −76.4 −30.9 −0.3 5.4

Figure 7. Contour plot for the interaction of an N atom with a rigid
CN radical. The contour interval for the thick (thin) contours is 5.0
(0.1) kcal/mol. Other plotting conventions are as in Figure 3.

Figure 8. SPP for the isomerization of CN2 as a function of the
distance between one nitrogen atom and the midpoint of the
remaining CN fragment. The solid red dots correspond to the first-
and second-order saddle points.

Figure 9. Plot of the normalized differential contribution to the
transition state number of states N′(RNM) as a function of the
separation RNM between the N atom and the midpoint of CN. The
normalization is relative to the value at the minimum in the potential
on the global dividing surface (RNM = 1.4 Å; cf. Figure 8). The
different lines denote N′ values for different energies in kcal/mol
relative to CN + N.
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Bowman et al.39 who simply linearly interpolated in internal
coordinates between the two saddle points (cf. our Model 2).
The path one obtains from this approach depends on the
choice of internal coordinates used in the interpolation. In
Figure 10 we show linear interpolations in two different

coordinate systems, one giving a barrier of ∼3 kcal/mol (in
agreement with Bowman et al.) and the other giving a barrier of
∼8 kcal/mol. Our attempts to locate a second-order saddle
point near these maxima failed, implying neither path is a good
approximation to the ridge that contains the second-order
saddle point; i.e., the ridge must be highly curved in these
coordinates. As discussed in section II and the Appendix, one
would not expect such an interpolation to be a useful choice of
global dividing surface, as the dividing surface connecting these
two saddle points should be locally perpendicular to their
reaction coordinates. Such a simple interpolation worked well
for the triatomic examples discussed above because for those
systems the two reaction coordinates were similar. This is not
the case for formaldehyde. The character of the reaction
coordinate for the tight saddle point is primarily an in-plane
bending of the hydrogen closest to the CO, whereas the
reaction coordinate for the roaming saddle point is an almost
entirely out-of-plane, orbiting (torsional) motion of the
roaming hydrogen atom.
Subsequently, Shepler et al.40 reported a two-dimensional

scan of the potential energy surface between the two saddle
points, again linearly interpolating the internal coordinates
between the two structures. Using this approach they found a
path having no barrier connecting the two saddle points. In
Figure 11 we show the results of a similar calculation. The
barrierless path Shepler et al. describe begins at the roaming
saddle point (marked with the letter R in Figure 11) descends
vertically along the dihedral angle coordinate and eventually
curves to the left to connect with the tight saddle point
(marked with the letter T). As discussed in section II, this path
is problematic because near the roaming saddle point it involves
motion along the roaming reaction coordinate (which as noted
above is almost entirely torsional motion). In fact, any path that

decreases in energy as it moves away f rom the f irst-order saddle
point necessarily has a high overlap with the reaction coordinate.
A better approximation to the ridge can be obtained by

initially moving away from the roaming saddle point in the
horizontal direction of Figure 11, which is the CH stretching
coordinate and has little overlap with the roaming reaction
coordinate. This takes us toward what looks like a second-order
saddle point at a CH distance of ∼2.25 Å and a dihedral angle
of ∼75° in the interpolated potential energy surface of Figure
11. When a search for a second-order saddle point was initiated
from this point, the calculation converged to the minimum
energy point on a conical intersection previously reported by
Araujo et al.41 Note that a minimum energy point on a conical
intersection is similar to a second-order saddle point, where,
instead of two imaginary frequencies, the conical intersection
may be characterized as having two coordinates that break the
degeneracy of the intersecting states.42 The lower-energy state
therefore behaves like a second-order saddle point near the
conical intersection, except that a two-dimensional cusp
(having two “infinite” imaginary frequencies) is formed instead
of a second-order saddle point. The two coordinates defining
the cusp may be used analogously with the two imaginary
frequencies of a second-order saddle point to define the
orientation of the dividing surface. It appears then that, for
formaldehyde, the conical intersection acts as the barrier on the
ridge separating the two first-order saddle points. This conical
intersection has an energy of 11 kcal/mol relative to the H +
HCO asymptote.
To improve upon Model 2, we may define our global

dividing surface to pass through the conical intersection, as in
Model 3. We confirmed the connectivity of the conical
intersection and the two first-order saddle points by following
linearly interpolated paths from the conical intersection to each
of the first first-order saddle points. Furthermore, we do this for
both choices of internal coordinate systems used in Figure 10.
The resulting approximate ridge profiles are displayed in Figure
12, plotted as a function of the HCO angle that both coordinate

Figure 10. Potential energy curves resulting from linearly interpolating
between the geometries of the tight and roaming saddle points for
formaldehyde. The internal coordinates used for the blue curve include
the CO distance, two CH distances and two HCO angles. The internal
coordinates for the red curve replaces one of the CH distances with
the HH distance and one of the HCO angles with the HHC angle.

Figure 11. Formaldehyde potential energy surface resulting from the
two-dimensional linear interpolation of the geometries of the tight and
roaming saddle points. R indicates the location of the roaming saddle
point. T indicates the location of the tight saddle point.
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systems have in common. From this plot it can be seen that the
energy varies nearly monotonically from the conical inter-
section down to both first-order saddle points independent of
the choice of internal coordinates.
The plot in Figure 12 indicates an energetic separability of

the tight and roaming mechanisms up to 11 kcal/mol. We have
not explored the dynamic separability for formaldehyde because
the change from a second-order saddle point to a conical
intersection complicates the analysis. Nevertheless, the results
for the MgH2 and CN2 cases clearly suggest that the tight and
roaming mechanisms will remain dynamically distinct to excess
energies of 20 kcal/mol or more. This conclusion is consistent
with the experimental results, which show two distinct product
populations.1

IV.B. Acetaldehyde. Shepler et al.40 have also reported a
linearly interpolated path connecting the tight and roaming
saddle points in acetaldehyde, finding a barrier of 6 kcal/mol. In
Figure 13 we show two such linearly interpolated paths, again
for two different choices of internal coordinates. Again the
resulting energy profiles are very different. For the case when
one of the internal coordinates is the distance between the

methyl carbon and the HCO hydrogen, we obtain a curve
(shown in red in Figure 13) similar to that reported by Shepler
et al. However, for the case where this distance coordinate is
replaced by the CC distance, we find a dramatically different
profile, shown in blue in Figure 13. The blue profile exhibits
multiple minima and has almost no net barrier separating the
two saddle points. For the reasons discussed above, neither of
these linearly interpolated paths is expected to be a good
approximation to the ridge.
Starting a search at a geometry analogous to that of the

conical intersection in formaldehyde we find a similar conical
intersection for acetaldehyde. To our knowledge this conical
intersection has not been previously reported. The structure of
the conical intersection is shown in Figure 14. Again, as a check

on the connectivity of the first-order saddle points and the
conical intersection, we follow linearly interpolated paths from
the conical intersection to each of the saddle points. The
results, shown in Figure 15, suggest that this conical
intersection is the barrier on the ridge connecting the two
first-order saddle points (as was found for formaldehyde). This
barrier is predicted to be ∼12 kcal/mol above the CH3 + HCO
asymptote.
The plot in Figure 15 indicates an energetic separability of

the tight and roaming mechanisms up to an excess energy of 12

Figure 12. Potential energy curves resulting from linearly interpolating
between the geometries of the tight saddle point, the conical
intersection, and the roaming saddle point for formaldehyde. The
internal coordinates are as defined in Figure 10.

Figure 13. Potential energy curves resulting from linearly interpolating
between the geometries of the tight and roaming saddle points for
acetaldehyde.

Figure 14. Structure of the conical intersection in acetaldehyde from
multistate CASPT2 calculations.

Figure 15. Potential energy curves resulting from linearly interpolating
between the geometries of the tight saddle point, the conical
intersection, and the roaming saddle point for acetaldehyde.
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kcal/mol, and they are likely dynamically distinct to much
higher energies.

V. HNNOH
The decomposition of HNNOH is a key step in the thermal de-
NOx process.

43 HNNOH is formed via the addition of NH2
and NO making NH2NO, which then isomerizes to HNNOH.
HNNOH can decompose via a tight saddle point to N2 + H2O
or via simple bond cleavage to make the radicals, HNN +
OH.44 In Figure 16 we show a plot adapted from ref 44,

showing the NHH + OH interaction potential. In this plot the
cis and trans HNNOH species can be seen as the two attractive
regions on the right and the OH + HNN → H2O + N2
disproportionation path can be seen in the upper left. There
also is what appears to be a roaming type saddle point with (Y,
Z) coordinates of (∼1, ∼5) that connects the cis radical
dissociation path to the disproportionation path. However, all
attempts to find a true saddle point in this region failed with the
optimizations collapsing to the much lower energy tight saddle
point for molecular elimination, HNNOH → H2O + N2. To
better understand the connection between the tight saddle
point and the roaming region of the potential surface shown in
Figure 16, we evaluate a SPP using the NO distance as the
distinguished coordinate. The result is shown in Figure 17
where it is compared to a harmonic treatment for the NO
stretch coordinate of the tight saddle point.
The plot in Figure 17 would seem to suggest that there is no

distinction between the tight and roaming mechanisms for
HNNOH. Nevertheless, we have again evaluated the differ-
ential contributions N′ for a few selected NO separations RNO.
We assume rigid rotor harmonic oscillator energies for the
motions orthogonal to the assumed SPP coordinate RNO.
Though these assumptions will not be quantitatively correct,
especially in the “roaming” region, they should provide at least

a semiquantitatively correct description of the variation in N′
along the SPP.
The calculated differential contributions are illustrated in

Figure 18 for a range of excess energies relative to HNN + OH.

Notably, each of the lines shows a minimum at a NO separation
of 3 Å, indicating the clear existence of a mechanism divider
surface. Furthermore, this minimum is quite pronounced. For
example, for an excess energy of 15 kcal/mol, the minimum is
just ∼15% of both the value at the potential minimum for the
global dividing surface and the value at large RNO. Thus, even in
this case, where there is neither a roaming saddle point nor a
second-order saddle point, there is some dynamic separation
into tight and roaming mechanisms. The plot also indicates that
the roaming contribution to the number of states at the
transition state likely becomes significant already by about 10
kcal/mol. For energies in this range or higher, simple rigid rotor
harmonic oscillator estimates based on the tight transition state

Figure 16. Contour plot for the interaction of a rigid OH radical with
a rigid NNH radical. The contour interval is 2 kcal/mol. Both the
HON angle and the HONN dihedral angle are fixed at 90°. Other
plotting conventions are as in Figure 3. Adapted from ref 44.

Figure 17. Potential curves for the dissociation of HNNOH as a
function of the NO distance. The solid line is the SPP as described in
the text. The dashed line is a harmonic approximation to the saddle
point, NO stretch. The red dot corresponds to the tight saddle point
for the reaction HNNOH → H2O + N2. The energies are relative to
the NNH + OH asymptote.

Figure 18. Plot of the normalized differential contribution to the
transition state number of states N′ as a function of the separation RNO
between the O atom and the central N atom. The normalization is
relative to the value at the minimum in the potential on the global
dividing surface (RNM = 2.25 Å; cf. Figure 17). N′ values for various
energies E in kcal/mol relative to HNN + OH are shown.
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will clearly be inadequate. We note that an excess energy of 10
kcal/mol corresponds to an effective temperature of 600 K for a
system of eight classical harmonic oscillators. Thus, an accurate
prediction of the branching in NH2 + NO at combustion
temperatures must include a treatment of both the tight and
roaming contributions.

VI. CONCLUSIONS

The second-order saddle point on the ridge containing the two
first-order saddle points provides a useful measure of the
energetic separability of the two related saddle points. Energetic
separability guarantees dynamic separability, but the converse is
not true. Simple global dividing surfaces can be constructed
from information about only the first-order saddle points
(Models 1 and 2). Information about the second-order saddle
points allows for systematic and substantial improvements of
these dividing surfaces (Model 3), with information about the
SPP’s yielding further improvements. Simple variational
optimizations should yield meaningful global dividing surfaces
that are also locally optimal. In this context, conical
intersections can be viewed as generalized second-order saddle
points, and they play the same role in the development of
global dividing surfaces for some systems.
Evaluations of the differential contributions to the reactive

flux along approximate SPP’s provide indications of the
dynamic separability of the roaming and tight mechanisms.
The location of the n−2-dimensional surface where the
differential contribution is minimized provides an approximate
separation between the mechanisms. We label this surface the
mechanism divider surface. The smaller the flux at the
mechanism divider is relative to the maximum in the flux
near the first-order saddle points, the greater is the separability
of the mechanisms. The mechanism divider surface is often, but
not always, associated with a second-order saddle point or
conical intersection connecting the two first-order saddle points
along the SPP.
There is a wide variability in the degree to which roaming

and tight saddle point mechanisms connecting the same
reactants and products are energetically separable. Remarkably,
even for the HNN + OH reaction, where there is no energetic
separability, the roaming and tight mechanisms are dynamically
separable to quite a high energy. The finding of a strong
dynamic separability up to quite high energy for all examples
studied here is likely a fairly general result.

■ APPENDIX

A.1. Electronic Structure Methods
Because the focus of this paper is qualitative in nature, the
details of the electronic structure methods are not particularly
important. However, for completeness we briefly summarize
here the levels of electronic structure theory used in each of the
examples discussed above. All electronic structure calculations
were carried out with the Molpro program package.45

HCO2: The results shown in Figure 1 were obtained using
internally-contracted, multireference configuration interaction
calculations (MRCI).46,47 The calculations employed a 7 orbital
(6 CO2 π orbitals plus the hydrogen 1s orbital), 9 electron
active space and the Dunning aug-cc-pVDZ basis set.48 The
CASSCF calculations were state averaged over two states with
dynamical weighting. Only the OH distance (R) and the
HOCO dihedral angle were varied. The remaining geometrical
parameters were kept fixed at the values for the cis saddle point.

MgH2: The results shown for MgH2 were also obtained using
internally-contracted, MRCI.46,47 The calculations employed a
full valence active space (4 electrons in 6 orbitals) and the
Dunning cc-pVQZ basis set.49,50

CNN: The results shown for the isomerization of CNN were
obtained using second-order, multireference, perturbation
theory (CASPT2).51 The calculations employed an active
space consisting of 10 electrons in 9 orbitals (all of the valence
p orbitals) and the Dunning cc-pVTZ basis set.49

H2CO: The formaldehyde results were obtained using
CASPT2, with a 9 orbital and 10 electron active space and
the Dunning aug-cc-pVTZ basis set.48 For the calculations in
the vicinity of the conical intersection, the CASSCF calculations
were state averaged over the two states involved in the crossing
and we used the multistate variant of CASPT2.52

CH3CHO: The acetaldehyde results were obtained using
CASPT2, with a 3 orbital and 2 electron active space and the
Dunning aug-cc-pVTZ basis set.48 Again, for the calculations in
the vicinity of the conical intersection, the CASSCF calculations
were state averaged over the two states involved in the crossing
and we used the multistate variant of CASPT2.
HNNOH: The results shown in Figure 16 for HNNOH are

derived from CASPT2 calculations with a 7 orbital and 8
electron active space and the Dunning aug-cc-pVDZ basis set.48

The CASSCF calculations were state-averaged over the two
components of the OH, 2Π fragment.

A.2. Mathematical Formulation of Model Global Dividing
Surfaces and Separability of State Counts

1. Defining the Geometry of the Transition State Dividing
Surface. In nonvariational TST one typically defines the
dividing surface as passing through a first-order saddle point,
perpendicular to the normal mode vector, x ̂(0), associated with
the imaginary frequency. (The notation a ̂ denotes a unit vector
in the direction of a.) Such a planar dividing surface is defined
by the constraint

· ̂ =Q x 0(0) (A1)

where the n internal nuclear coordinates are labeled Q. The
resulting n−1-dimensional collection of geometries that satisfies
eq A1 is labeled q. Although this “conventional” TST
prescription is generally useful, there are also many instances
where this prescription is not accurate, as the optimal dividing
surface moves away from the saddle point or changes
orientation.
A useful series of candidate dividing surfaces for variational

transition state minimizations can be obtained by following the
intrinsic reaction coordinate (IRC) downhill from the saddle
point. Coordinates along this path may be labeled by the
reaction coordinate s, which describes the mass-scaled distance
along the IRC from the saddle point toward either the reactants
(negative s) or the products (positive s). Alternatively, in some
cases it is simpler, and reasonably appropriate, to consider the
analogous variations along a distinguished coordinate minimum
energy path (MEP). Along the IRC (or MEP) but displaced
from the saddle point, one can define useful dividing surfaces as
perpendicular to the nuclear gradient, and we label the unit
vector in this direction x ̂(s). Equation A1 is generalized to

· ̂ = sQ x s( ) (A2)

which describes a dividing surface perpendicular to x ̂(s) and
having the value s along the excluded coordinate. We note that
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one may also variationally optimize x ̂(s) to point in directions
other than the gradient.
The dividing surfaces discussed so far are all hyperplanes.

One can relax this restriction by introducing additional
geometric parameters and writing

· ̂′ = sQ x Q( )s( ) (A3)

where now x′̂(s) can point in different directions at different
parts of the dividing surface. Of course, care must be taken to
ensure that the resulting dividing surface is continuous. In the
local vicinity of the IRC, one may expect x′̂(s)(Q) to
variationally optimize to x ̂(s). If there is significant flux away
from the reaction path, the additional flexibility in eq A3 may
allow for more accurate predictions than those obtained with eq
A2.
Finally, we note that dividing surfaces need not be defined

relative to saddle points or IRCs or MEPs. For example, when
describing barrierless reactions, one may obtain useful dividing
surfaces by constraining the center-of-mass separations of the
reactants or using generalized dividing surfaces based on
constraining the distance between pivot points displaced from
the centers of mass. The index s may be generalized and
associated with the pivot point distances.
In summary, dividing surfaces may be defined by their

normal x ̂(s) and by the value along this excluded coordinate s.
Most generally, x ̂(s) can be a function of geometry, as in x′̂(s),
subject to the constraints that the dividing surface is continuous
and completely separates reactants from products.
2. Counting States on the Dividing Surface. A standard

expression for the classical state count for an arbitrary dividing
surface was provided in eq 3 of the text. In principle, this state
count can be evaluated exactly for a given potential energy
surface and dividing surface, although it is difficult to do so in
practice. Instead, one typically makes additional assumptions
when evaluating NE

(s), and one often wishes to use quantum
mechanical formulas instead of classical ones. One choice is to
use quantum mechanical RRHO state counts, along with
rotational constants and harmonic vibrational frequencies
obtained from the saddle point geometry for s = 0 and
evaluated along the reaction path for s ≠ 0. This quantum
mechanical RRHO TST prescription can be accurate, but there
are many applications where its accuracy can be questioned.
When the harmonic frequencies are very small, for example, the
harmonic oscillator approximation is not expected to be
accurate.
Whatever the level of theory used to approximate NE

(s), the
state counts may then be variationally optimized with respect to
x ̂(s) (or x′̂(s)) and s for each total energy to obtain estimates for
NE

‡ from which variational TST rate coefficients are obtained.
3. Sparability of Multiple Reaction Paths. As discussed in

section II, there is necessarily a single n−1-dimensional dividing
surface that completely separates reactants from products for
any reaction where a rate can be meaningfully defined, even
reactions with multiple pathways leading from the same
reactants to the same products. It can nonetheless be practically
convenient to represent such a global dividing surface in terms
of its contributions from different reaction pathways. In
addition to facilitating the calculation, such a separation
provides a useful conceptual picture for physically interpreting
the relative importance of competing reaction mechanisms.
Such a separation is especially relevant for the molecular

decomposition reactions considered here, which feature both
tight and roaming saddle points. For clarity we limit the present

discussion to systems with two saddle points connecting the
same set of reactants and products.
For the dissociation of HOCO discussed in section II, the

imaginary-frequency normal mode vectors for the cis (C) and
trans (T) saddle points are similar (xĈ = xT̂ ≈ R̂, where R̂ is a
unit vector in the direction of the radial coordinate R), but the
values of R at the two saddle points (RC and RT) are not. The
global dividing surfaces discussed qualitatively in section II and
shown in Figure 1 are presented in more detail here. The
surfaces are interpolated as a function of a single coordinate ϕ
such that they may be defined

ϕ ϕ= +R c R c R( ) ( )C C T T (A4)

The two blue lines in Figure 1 correspond to either cC = 1 and
cT = 0 or cT = 1 and cC = 0. An improved global surface was
suggested to pass through both saddle points, i.e.,

ϕ =c ( ) 1C C (A5a)

ϕ =c ( ) 1T T (A5b)

For simple linear interpolations satisfying eq A5, the resulting
global dividing surface will not satisfy

̂′ = ̂x Q x Q Q( ) for nears s( )
A
( )

A (A6)

where A = C and T; i.e., the resulting global dividing surface
will not be locally orthogonal to the reaction coordinate at each
saddle point. Specifically, if we define (one segment of) the
linearly interpolated global surface as

ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ=
−
−

−
−
−

= > >f
R R

R R
Q( ) 0 forT

C T

T

C T
C T

(A7)

we can calculate its normal by taking the gradient of eq A7, i.e.,

ϕ
ϕ ϕ

= ∇ · ̂ =
−

= ∇ · ̂ = −
−

=

ϕ

α

x f
R R

x f

x

R
1

1

0

R
C T

C T

(A8)

where α is any coordinate other than R and ϕ̂ and xî are the
components of x ̂ = x/|x|. The normal defined by eq A8 is clearly
not in the direction of the reaction coordinate R̂. If instead one
interpolates the dividing surface as

ϕ ϕ

ϕ ϕ ϕ

= − − =

> >

f R R RQ( ) sin
2

cos
2

0

for

T
2

C
2

C T (A7′)

then

ϕ ϕ ϕ

= ∇ · ̂ =

= ∇ · ̂ = −

=

ϕ

α

x f

x f R R

x

R 1

2( ) sin
2

cos
2

0

R

C T (A8′)

which is in the direction of R̂ for ϕ = ϕC(0°) and ϕT(180°) as
desired. The above procedure can be generalized to create
global dividing surfaces that pass through multiple first- and
second-order saddle points and that are locally orthogonal to
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the imaginary-frequency normal mode vectors at the first-order
saddle points.
Next we consider a series of simple models designed to

illustrate dynamic separability in transition state theory
calculations for reactions with one roaming R and one tight
T saddle point connecting the same sets of reactants and
products. The models are organized by the amount of
information required to construct them and by their complex-
ity. The simplest models (Models 0 and 1) only require
information about the first-order saddle points and do not
involve interpolation. In Model 2, global dividing surfaces are
obtained by interpolating between the two first-order saddle
points. Model 3 requires additional information at the
intermediate second-order saddle point. Model 4 employs
generalized linear surfaces intersecting to create a global surface
subject to variational optimizations. Finally, the SPP model
requires the existence of an SPP that smoothly connects the
second-order saddle point to both first-order saddle points.
Model 0. For completeness, we define Model 0 as the use of

dividing surfaces appropriate for a single saddle point as global
dividing surfaces. For example, one could calculate a total rate
coefficient using dividing surfaces based on the saddle point
associated with one conformer of a system with a torsion. With
appropriate treatments of anharmonicity, such a model may be
useful.
Model 1a. Model 1 is the simplest model that requires

information about both saddle points. Here, the roaming and
tight processes are assumed to be separable, i.e.,

= +‡ ‡ ‡N N NE E E,R ,T (A9)

Within this approximation, independent TST calculations can
be carried out using dividing surfaces appropriate for each
process, i.e.,

· ̂ = sQ x s
R
( )

R (A10a)

and

· ̂ = sQ x s
T
( )

T (A10b)

for NE,R
‡ and NE,T

‡ , respectively. The set of geometries satisfying
eqs A10a and A10b are labeled qR

(s) and qT
(s), respectively. The

fundamental assumption of Model 1a is that these two sets do
not overlap in energetically accessible regions of the potential
energy surface.
Model 1b. In general, the dividing surfaces defined by eqs

A10a and A10b will intersect one another in an n−2-
dimensional space, and we label the geometries in this space
q2
(s). The intersection space q2

(s) defines two halves of each of the
spaces qR

(s) and qT
(s), and we denote the halves that contain the

associated saddle points as qR̅
(s) and qT̅

(s), respectively. Model 1b
defines the space of the transition state dividing surface q to be
the union of qR̅

(s) and qT̅
(s). This dividing surface satisfies eq A6, is

continuous (unlike Model 1a), and fully separates reactants and
products. Model 1b defines a global dividing surface as the
union of segments associated with each transition state, which
aids in the discussion of separability as the flux through qR̅

(s) and
qT̅
(s) can be unambiguously associated with SPR and SPT,
respectively, and identifies the intersection space q2

(s) as defining
the critical surface separating the two segments.
(For some cases the surfaces do not intersect, as illustrated

for HCO2 in Figure 1. When this is the case, one could define
curved surfaces that intersect. Alternatively, one could define a

third surface that intersects and joins the two. This model will
be generalized as Model 4 below.)
To characterize the separability of the roaming and tight

processes, it is useful to identify the minimum-energy geometry
in the intersecting space of q2

(s) as Q2
(s) and its energy E2

(s). For E
< E2

(s), Model 1a and 1b give identical predictions, and one may
unambiguously say that the processes are separable for this
choice of dividing surfaces. For E > E2

(s), the dividing surfaces
sampled in Model 1a are not properly delimited, and Model 1a
will in general overcount NE

‡ due to this error. The energy of
E2
(s) relative to E therefore provides one criterion for discussing

separability. As discussed in section III though, dynamic
separability is more relevant to mechanistic ideas of separability,
and it may hold even when energetic separability does not.

Model 2a. In Model 2, we define a dividing surface by using
the directions of the imaginary frequency normal mode vectors
at the roaming and tight saddle points to interpolate between
the roaming and tight saddle points. Using linear interpolations
(Model 2a), such a dividing surface is defined piecewise by

=
· ̂ − · ̂

· ̂ − · ̂
−

· ̂ − · ̂

· ̂ − · ̂
=

· ̂ < · ̂ < · ̂

f Q
Q x Q x

Q x Q x

Q x Q x

Q x Q x

Q x Q x Q x

( ) 0

for

s s

s s

s s

s s

s s s

T
( )

T T
( )

R T
( )

T T
( )

R
( )

T R
( )

R R
( )

T R
( )

T T
( )

T
( )

R T
( )

(A11)

with similar equations for the other segments, where QT and
QR are the geometries of the tight and roaming saddle points,
respectively. The normal of this dividing surface is

′ = ∇ · ̂ = −
· ̂ − · ̂

′ = ∇ · ̂ =
· ̂ − · ̂

′ =α

x f

x f

x

x
Q x Q x

x
Q x x

1

1
Q

0

s
s s

s
s s

R R
( )

R R
( )

T R
( )

T T
( )

R T
( )

T T
( )

(A12)

which is not in the direction of the reaction coordinate at either
saddle point.

Model 2b. As discussed above for HOCO, one could choose
nonlinear interpolation schemes that are functions of the
interpolation coordinates designed to satisfy

̂ ′ = ∇ · ̂ =

′ = ∇ · ̂ =

′ =α

x f

x f

x

x

x

1

0

0

s

s

R R
( )

T T
( ) (A13a)

for Q = QR and

̂ ′ = ∇ · ̂ =

̂′ = ∇ · ̂ =

′̂ =α

x f

x f

x

x

x

0

1

0

s

s

R R
( )

T T
( ) (A13b)

for Q = QT, but these are not pursued in detail here. Instead,
we simply note that linear interpolations cannot, in general,
satisfy the requirement that the global dividing surface be
locally orthogonal to the reaction coordinates at each of the
saddle points. Model 2b is defined to be the use of some
nonlinear interpolation scheme that enforces eqs A13. One can
use the variational principle to numerically discriminate
between competing interpolation schemes that satisfy eqs A13.
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Model 3a. The linear interpolation schemes of Model 2a can
be generalized to include the second-order saddle point, such
that the global dividing surface consists of the segments
connecting the first- and second-order saddle points. To
motivate Model 3a, we note that this model defines the global
dividing surface as a union of spaces associated with each saddle
point, intersecting in a reduced dimensional space q2

(s). The
space q2

(s) naturally delimits the contributions to the total flux
from each of the two saddle points. If the definition of q2

(s) was
not known but was given flexible geometric parameters, one
could variationally improve the global dividing surface by
maximizing the energy E2

(s) with respect to the two interpolation
coordinates. If the optimization were sufficiently flexible, the
resulting q2

(s) would include the second-order saddle point as its
minimum energy geometry. The variational maximization of
E2
(s) therefore motivates the inclusion of the second-order

saddle point in the global dividing surface as well as its physical
usefulness in separating the dynamical contributions associated
with the two first-order saddle points.
Model 3b. For the same reasons discussed above for Model

2, the use of linear interpolations will not in general produce
global dividing surfaces that are locally orthogonal to the
reaction coordinates at each of the saddle points. One could
again pursue nonlinear interpolation schemes, and these
schemes define Model 3b.
Model 4a. Next we consider a model where the global

dividing surface consists of three segments. We start with
Model 1 and add a third linear dividing surface qA

(s) that
intersects and joins the two. The global dividing surface is then
the union of qR

(s), qT
(s), and qA

(s). Note that this scheme is less
useful for studying separability as the flux through qA

(s) cannot be
unambiguously assigned to R or T. Nonetheless, this scheme
may be practically useful as it results in a realistic global dividing
surface, avoids curved surfaces, is locally correct at the first-
order saddle points, and does not require the location of the
intermediate second-order saddle point. Variational optimiza-
tions could be used to guide the geometric specification of each
of the segments. Because the surfaces are planar and two of
them are defined as usual by the two first-order saddle points,
practical implementations of variational optimizations using
Model 4a could be made.
Model 4b. If one does know the second-order saddle point,

one could guarantee that qA
(s) contains it, thus removing one

parameter from the variational optimizations in Model 4a.
Furthermore, it is reasonable that a variationally optimized qA

(s)

will be perpendicular to some linear combination of the
imaginary frequency normal modes for the second-order saddle
point, and so one could define a model which contains only a
single parameter (a mixing angle) defining the normal qA

(s) as
some linear combination of the two imaginary frequency
normal mode vectors at the second-order saddle point.
Model 4c. Finally, we note that it might be convenient to

generalize Model 4b to consist of the union of more than three
segments: qR

(s), qA
(s), qB

(s), ..., qT
(s). If each segment were subject to

variational optimizations, it is reasonable to expect that each
segment would essentially map to some segment of the SPP. In
the limit of many segments, Model 4c converges to the SPP
model, discussed next.
SPP Model. A series of constrained saddle point

optimizations away from the proper saddle points for fixed
values of the interpolation coordinates yields the most
fundamental of the models discussed above. The resulting
dividing surface is therefore perpendicular to at least one degree

of freedom along which the energy is maximized and follows a
ridge connecting the two first-order saddle points to the
second-order one. Again, dynamical considerations may shift
the variationally preferred dividing surface away from this
energetically derived one. Nonetheless, a SPP and the
associated dividing surface provide a conceptually appealing
means for carrying out TST calculations and for studying
separability for reactions with multiple reaction paths.
These models suggest the usefulness of considering the

potential energy surface as a function of the interpolation
coordinates associated with the directions of the imaginary
frequency normal mode vectors for the two first-order saddle
points. Often, the character of these reaction coordinates can be
associated closely with some internal coordinate (a stretch,
bend, or torsion), which may be more convenient to use than
the normal mode vectors. We considered such two-dimensional
contour plots in the examples given in sections III−V.
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